Rotary actuators
CRAB series
The SKF brand now stands for more than ever before, and means more to you as a valued customer.

While SKF maintains its leadership as the hallmark of quality bearings throughout the world, new dimensions in technical advances, product support and services have evolved SKF into a truly solutions-oriented supplier, creating greater value for customers.

These solutions encompass ways to bring greater productivity to customers, not only with breakthrough application-specific products, but also through leading-edge design simulation tools and consultancy services, plant asset efficiency maintenance programmes, and the industry’s most advanced supply management techniques.

The SKF brand still stands for the very best in rolling bearings, but it now stands for much more.

SKF – the knowledge engineering company
SKF rotary actuators are designed to provide partial rotary motion. Fast or slow. Heavy or light duty. Complex or simple arrangements. You can choose from a wide variety of application areas. And you will find a solution with both technical and economic advantages.

The design of the rotary actuator enables very high torque. Furthermore, the power requirements are modest.

Since the gearing is produced in one stage, through the use of a ball screw, you can also rely on a high degree of efficiency. You can select the zero-backlash versions for maximum precision.

Our other models provide reliable operation at a lower cost. With SKF rotary actuators you have complete units which are virtually maintenance and lubrication-free. Moreover, they are not sensitive to either high or low temperatures.

SKF rotary actuators have few moving parts. At the heart of the design lies a ball screw supported in a ball bearing, a gear rack connected to the ball screw nut and a gear wheel/output shaft. When the ball screw rotates, the gear rack makes a linear movement. This causes the gear wheel and output shaft to rotate. The special geometric design and the straight-cut profile of the gear teeth enable smooth operation with extreme stiffness. The working range of the output shaft depends on the choice of model.
Define your application

Choice of application area also means choice of design.

With SKF rotary actuators you can meet the demands of advanced installations. Economic requirements can also be satisfied through the use of a simpler solution. Speed can vary from a fraction of a second up to several minutes or more. You can use many different types of drive. This usually takes the form of an electric motor.

The output shaft can be supplied with either an external or internal keyway, or specially designed to suit.

Control techniques may vary, from advanced computer systems to simpler methods. If required, we can supply your rotary actuator with electrical limit switches and mechanical position indicator or potentiometer for positioning control. Mechanical emergency operation (hand crank) is standard on all SKF rotary actuators.

Choose the precision you need

Let the precision requirements determine the choice of your rotary actuator. In demanding high-speed applications with a high duty factor, the natural choice is a rotary actuator which incorporates an SKF ball screw.

These are tried and tested, highly efficient units. Rotary actuators fitted with ball screws operate without backlash throughout their working life, as they are pre-loaded at all points of contact. Use of the ball screw permits a very high degree of angular resolution, as well as positional stability and precision. In less demanding applications with a low duty factor you could choose a rotary actuator with acme screw. This solution also provides you with a self-locking SKF rotary actuator.
Specify the load

SKF rotary actuators are designed and built for heavy duty operation. Not only in terms of torque but also to support external load.

The output shaft is dimensioned to take considerably heavier loads than those exerted under conditions of maximum torque. This means that it can withstand high bending stresses.

Mount directly

SKF rotary actuators are delivered ready to mount. They are compact units with few component parts in relation to their capabilities. Their simple, robust construction ensures reliable performance for many years of operation.

Four bolts are needed for mounting. The actuators can be used in almost any kind of environment; hot or cold; dry or damp. There is no need to worry about adjustment or maintenance.

The axial load carrying capacity amounts to several thousand N. As the SKF rotary actuator can withstand extreme loads it can also serve as a load-bearing element of your design. Special bearing arrangements are not usually required. With a custom made shaft, just attach the rotary actuator to a simple support, couple the equipment to the shaft of the actuator and switch on!

SKF rotary actuators are lubricated for life.
Safety in the distribution of electricity is of great importance all over the world.

Using SKF rotary actuators, major manufacturers in high power switching, are able to design reliable motorized remote-controlled switches. This automatic switching ensures continuity of supply by by-passing a line fault in the event of failure.

A high degree of automation and trouble-free production are two of the motor industry’s most important requirements.

For their assembly process, they have installed SKF rotary actuators in order to hold the workpieces exactly in position during the assembly operation. This resulted in increased safety both for the operators and the process.
Accurate weather forecasting is essential for the safety of air traffic. Weather radar systems provide one of the most important means of detecting approaching storms. Each rotation of the antenna requires a rapid and precise adjustment of the angle of inclination. SKF rotary actuators have been chosen for this task.

Modern vessels employ variable-pitch propeller blades for maneuvering. These are often used in conjunction with sophisticated computer systems. Such is the case with vessels used in diving operations, where the exact position has to be maintained even during bad weather conditions. Using SKF rotary actuators, the propeller blades respond precisely to signals from the computer.
Technical information

Drive unit

<table>
<thead>
<tr>
<th>Type</th>
<th>Dimensions in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>CRAB 12</td>
<td>310</td>
</tr>
<tr>
<td>CRAB 17</td>
<td>120</td>
</tr>
</tbody>
</table>

Standard output shaft design

- Solid
- Solid with keyway
- Hollow shaft with keyway

Other designs are available on request.

Technical data

Actuator

<table>
<thead>
<tr>
<th>Type</th>
<th>Max. angular working</th>
<th>Gear ratio</th>
<th>Acme screw</th>
<th>Acme screw range</th>
<th>Max. angular speed</th>
<th>Efficiency factor</th>
<th>Max. inst. output</th>
<th>Max. axial load torque</th>
<th>Max. tilting torque</th>
<th>Backlash</th>
<th>Start</th>
<th>Temp. range</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°</td>
<td>°/s</td>
<td>%</td>
<td>%</td>
<td>Nm</td>
<td>N</td>
<td>Nm</td>
<td>°</td>
<td>°</td>
<td>Nm</td>
<td>°C</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>CRAB 12</td>
<td>125</td>
<td>1:44</td>
<td>-</td>
<td>120</td>
<td>75</td>
<td>-</td>
<td>200</td>
<td>5 000</td>
<td>160</td>
<td>±0,05</td>
<td>-</td>
<td>±0,3</td>
<td>-20 to +60</td>
</tr>
<tr>
<td>CRAB 17</td>
<td>155</td>
<td>90</td>
<td>50</td>
<td>120</td>
<td>50</td>
<td>35</td>
<td>8,5</td>
<td>100</td>
<td>100</td>
<td>±0,25</td>
<td>±0,3</td>
<td>-20 to +60</td>
<td>3</td>
</tr>
<tr>
<td>CRAB 20</td>
<td>228</td>
<td>122</td>
<td>80</td>
<td>176</td>
<td>85</td>
<td>60</td>
<td>10,5</td>
<td>65</td>
<td>72</td>
<td>92</td>
<td>71</td>
<td>±0,5</td>
<td>-20 to +60</td>
</tr>
<tr>
<td>CRAB 30</td>
<td>286</td>
<td>134</td>
<td>100</td>
<td>230</td>
<td>115</td>
<td>80</td>
<td>12,5</td>
<td>80</td>
<td>90</td>
<td>116</td>
<td>90</td>
<td>±2,0</td>
<td>-20 to +60</td>
</tr>
<tr>
<td>CRAB 40</td>
<td>360</td>
<td>1:56</td>
<td>1:71</td>
<td>90</td>
<td>75</td>
<td>30</td>
<td>400</td>
<td>10 000</td>
<td>1 120</td>
<td>0,0</td>
<td>±0,25</td>
<td>±0,3</td>
<td>-20 to +60</td>
</tr>
</tbody>
</table>

1) Axial load will decrease torque efficiency factor
2) Axial load reduces the output torque
3) Valid when shaft speed is <18°/s
4) Measured on the output shaft
5) Value by experience. If lower value is needed, contact SKF
6) If different temperature range is needed, contact SKF

Contact SKF if higher speed, load or torque is required. SKF rotary actuators designed with acme screw are self-locking
Calculations

Ball screw actuators

The service life of an SKF rotary actuator is normally determined by the life of the ball screw.

L_{10} is defined as the life that 90% of a sufficiently large group of apparently identical actuators can be expected to attain or exceed.

Sometimes the life of the motor can be shorter than the life of the ball screw, however, the motor can be easily replaced.

In order to calculate the service life (L_{10}) of an SKF rotary actuator it is necessary to determine the size of the actual mean torque (T_m).

The torque fluctuates often during one working cycle but T_m has the same influence on the actuator as the actual fluctuating torque. The mean torque (T_m) can be calculated using the formula:

$$T_m = \sqrt{\frac{T_1^3 C_1 + T_2^3 C_2 + T_3^3 C_3 + \cdots}{C_1 + C_2 + C_3 + \cdots}} \text{ Nm}$$

T_1, T_2, T_3, \ldots is the constant torque (in Nm) during C_1, C_2, C_3, \ldots fraction of a cycle.

Acme screw actuators

The L_{10} life of a ball screw can be predicted by the rolling bearing theory and experience.

The life of an acme screw has different characteristics. While the lifetime of a ball screw ends rather suddenly (due to material stresses in the balls) the wear of an acme screw starts from the beginning and continues until final breakdown.

Therefore, when predicting the service life of a rotary actuator incorporating an acme screw, it is necessary to know the ambient temperature, intermittence factor, rotational speed, etc. Always contact SKF whenever you consider acme screw versions.
Calculation of motor size

To calculate the appropriate size of the motor (drive) it is necessary to know the maximum load (torque) that the actuator must handle and at which rotational speed this takes place.

The speed of the drive unit \(n_{in} \) can be calculated from diagram 1 or with help of this formula.

\[
n_{in} = \frac{15 \times U}{t_{90\degree}} \text{ rpm}
\]

\(n_{in} \) = The speed of the drive unit in rpm (the actuator input speed in order to meet the requested speed on the output shaft.)

\(t_{90\degree} \) = Positioning time for a 90° angular movement on the output shaft of the actuator.

\(U \) = Gear ratio in actuator.

The input torque needed \((T_{in}) \) can be calculated from diagram 2 or with help of this formula.

\[
T_{in} = \frac{T_{out}}{U \times \eta_a} \text{ Nm}
\]

\(T_{out} \) = Maximum output torque (actuator) Nm

\(U \) = Gear ratio in actuator

\(\eta_a \) = Efficiency factor (actuator)

Example:
You have chosen a CRAB 30 rotary actuator to operate 600 Nm at maximum, with a speed of 7,5°/s. (7,5°/s equal to 90°/12 s) What torque (Nm) and speed (rpm) must the drive unit produce?

Alt. 1: See diagram 1 and 2.

Alt. 2: Use the formulae

\[
\text{Torque}_{(motor)} = \frac{T_{out}}{U \times \eta_a} = \frac{600}{88 \times 0.75} = 9.09 \text{ Nm}
\]

\[
\text{Speed}_{(motor)} = \frac{15 \times U}{t_{90\degree}} = \frac{15 \times 88}{12} = 110 \text{ rpm}
\]

N.B. these diagrams are not valid for CRAB 20, 30, or 40 versions with ACME SCREW. In these cases use the calculations formulae. Always contact SKF whenever you consider these ACME SCREW versions.
<table>
<thead>
<tr>
<th>Product features</th>
<th>User benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero backlash</td>
<td>Precise positioning</td>
</tr>
<tr>
<td></td>
<td>High repeatability</td>
</tr>
<tr>
<td>Rigid construction</td>
<td>Elasticity negligible</td>
</tr>
<tr>
<td>Compact design</td>
<td>Space saving</td>
</tr>
<tr>
<td></td>
<td>Flexible installation</td>
</tr>
<tr>
<td></td>
<td>Outdoor application</td>
</tr>
<tr>
<td>Symmetric design</td>
<td>Flexible motor assembly</td>
</tr>
<tr>
<td>sides</td>
<td>Output shaft available on both</td>
</tr>
<tr>
<td>Load carrying</td>
<td>No bearing support required</td>
</tr>
<tr>
<td></td>
<td>Tilting moment acceptable</td>
</tr>
<tr>
<td></td>
<td>Axial load acceptable</td>
</tr>
<tr>
<td>Ball screw actuator</td>
<td>High efficiency</td>
</tr>
<tr>
<td></td>
<td>100 % duty factor</td>
</tr>
<tr>
<td></td>
<td>Back drive possible</td>
</tr>
<tr>
<td></td>
<td>External self-locking</td>
</tr>
<tr>
<td>Acme screw actuator</td>
<td>Integrated self-locking</td>
</tr>
<tr>
<td>Custom-made shaft design</td>
<td>No special adapter required</td>
</tr>
<tr>
<td></td>
<td>Quick installation</td>
</tr>
<tr>
<td></td>
<td>Cost-effective engineering</td>
</tr>
<tr>
<td>Several motor options</td>
<td>Optimized motor choice</td>
</tr>
<tr>
<td></td>
<td>Specially-designed control system</td>
</tr>
<tr>
<td></td>
<td>not required</td>
</tr>
<tr>
<td>General</td>
<td>Mainentance-free operation</td>
</tr>
<tr>
<td></td>
<td>Ready to build in component</td>
</tr>
</tbody>
</table>
Rotary actuators, CRAB 17

Rotary actuator selection made easy
With the CRAB 17 modular concept, each actuator can be easily customized for a particular application. The rotary actuator from SKF is modular so that critical components can be interchanged to meet the needs of a special design priority.

The purpose with CRAB 17 is to be small and compact but still be able to produce high torque. As the actuator can withstand high loads it can also serve as a load-bearing element of your design. Special bearing arrangements are not usually required.

Maintenance free modular actuator from SKF
CRAB 17 rotary actuators are maintenance free and sealed for life in an aluminium housing. Four bolts are needed for mounting. The actuators can be used in almost any kind of environment; hot or cold; dry or damp. There is no need to worry about adjustment or maintenance. CRAB 17 is lubricated for life.

Few moving parts combined to a simple, robust construction enables reliable performance for many years of operation.

This is a very flexible actuator, besides the standard designs of the output shaft there are also various possibilities to design the output shaft in accordance with customer specifications.

In the standard range there are a lot of different options of motors, gears and connectors. In many applications there is a need of emergency manoeuvring in the event of power failure. CRAB 17 have several different solutions to offer.

Safety in the distribution of electricity is of great importance all over the world.

Using CRAB 17, major manufactures in high power switching, are able to design reliable motorized remote controlled switches. This automatic switching ensures continuity of supply by bypassing a line fault in the event of failure.
Performance diagrams, CRAB 17

Technical data

- Max angular working range: ∞
- Gear ratio: 1:52
- Max angular speed: 180°/s
- Efficiency factor: 50 %
- Max instantaneous output torque: 200 Nm
- Max axial load: 5 000 N
- Max tilt moment: 100 Nm
- Backlash: ±0,25°
- Start current (E110C/E220C): 2,1/0,8 A
- Start torque: ≈0,3 Nm
- Temperature range: -20 to +60 °C
- Weight: 3 kg
Type key, CRAB 17

<table>
<thead>
<tr>
<th>Gear</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Emergency manoeuvre
- None
- Hand crank: A
- Release on shaft*: B

Shaft design
- Solid: 1
- Solid with key way: 2
- Hollow with key way: 3
- Hollow with adapted to limit switch unit: 4
- Hollow with splines*** (see accessories B): 5
- Customized design: 6

Limit switches
- None
- Switch**: 5

Motor direction
- Rear: R
- Upwards: U
- Front: F
- Downwards: D

Motor assembly
- Right: R
- Left: L

Motor
- C12C
- C24C
- C90C
- E110C
- E220C

Options for CxxC motors
- Without cable
- Encoder: E
- Without cover: N
- EMC filter: M
- Cable 2 m: T2
- Cable 2 m with Jack plug: T2P

* Only standard shaft no 5
** Fits standard shaft no 1, 2, 4 and 5
*** Only in combination with emergency manoeuver B

Motor assembly

- **Left (L)**
 - Diagram showing motor assembly for left side

- **Right (R)**
 - Diagram showing motor assembly for right side

Motor direction

- **Rear (R)**
 - Diagram showing motor direction for rear

- **Upwards (U)**
 - Diagram showing motor direction for upwards

- **Downwards (D)**
 - Diagram showing motor direction for downwards

- **Front (F)**
 - Diagram showing motor direction for front

14
Main measurements

Standard shaft design

1-Solid shaft

2-Solid shaft with keyway

3-Hollow shaft with keyway

4-Hollow shaft with keyway adapted for limit switch unit

Accessories

5-Limit switch unit

B-Emergency manoeuvring, release on shaft, hollow shaft with splines*

A-Emergency manoeuvring, gearhouse with hand crank

Motor options

* Splines according to SKF standard.
Contacts

www.actuators.skf.com
actuators@skf.com